python3怎么使用hdf5文件?

2021-07-29 10:32:13 浏览数 (3537)

HDF5文件是一种特殊的用来存储和组织大量数据的一组文件格式,在大量科学数据的存储和操作中具有极其优异的特性。python作为一门科学运算和大数据操作的首选语言,它也可以使用和操作hdf5文件,那么python怎么使用hdf5文件呢?接下来这篇文章告诉你。

什么是HDF5文件呢?

先引用一波维基百科的介绍,『层级数据格式(Hierarchical Data Format:HDF)是设计用来存储和组织大量数据的一组文件格式(HDF4,HDF5)。

它最初开发于美国国家超级计算应用中心,现在由非营利社团HDF Group支持,其任务是确保HDF5技术的持续开发和存储在HDF中数据的持续可访问性。』。

HDF5 拥有一系列的优异特性,使其特别适合进行大量科学数据的存储和操作,如它支持非常多的数据类型,灵活,通用,跨平台,可扩展,高效的 I/O 性能,支持几乎无限量(高达 EB)的单文件存储等

如何在Linux中查看hdf5文件呢?

h5ls info.h5
# key1    Dataset {10000}
# key2    Dataset {10000,5}
# key3    Dataset {20000,30}

h5py模块

我们可以使用Python非常方便的读写hdf5文件,最常用的模块就是h5py。下面说明一下它的安装及使用方法:

安装模块

pip install h5py
pip install numpy
# numpy 通常是作为配合使用

对h5py的总结:

『一个 HDF5 文件是存储两类对象的容器,这两类对象分别为:

dataset:类似数组的数据集合; gropp;类似目录的容器,其中可以包含一个或多个 dataset 及其它的 group。

一个 HDF5 文件从一个命名为 "/" 的 group 开始,所有的 dataset 和其它 group 都包含在此 group 下,当操作 HDF5 文件时,如果没有显式指定 group 的 dataset 都是默认指 "/" 下的 dataset,另外类似相对文件路径的 group 名字都是相对于 "/" 的。

HDF5 文件的 dataset 和 group 都可以拥有描述性的元数据,称作 attribute。

用 h5py 操作 HDF5 文件,我们可以像使用目录一样使用 group,像使用 numpy 数组一样使用 dataset,像使用字典一样使用属性,非常方便和易用。』

写入hdf5文件

import h5py
import numpy as np
# 如果你要在根group下创建dataset
f = h5py.File('info.h5', 'w')
values1 = np.arange(12).reshape(4, 3)
values2 = np.arange(20).reshape(4, 5)
f.create_dataset(name='key1', data=np.array(values1, dtype='int64'))
f.create_dataset(name='key2', data=np.array(values2, dtype='int64'))
# 如果你要创建一个group(目录)
# 然后指定dataset放置的group
f.create_group('/dir1')
f.create_group('/dir1/dir2')
data = np.arange(6).reshape(3, 2)
f.create_dataset('/dir1/dir2', data=data)
# 最后别忘了关闭文件
f.close()

读取hdf5文件

import h5py
with h5py.File(info.h5, 'r') as f:
    values1 = f['key1'].value
    values2 = f['key2'].value

遍历hdf5文件

import h5py
import numpy as np
f = h5py.File('train/e1_1.hdf5')
key = ""
for k in f.keys():
    key = k
d = f[key]
print(d)
a = np.ones(d.shape)
d.read_direct(a)
print(a)
f.close()

以上就是python怎么使用hdf5文件的个人经验了,希望能给大家一个参考,也希望大家多多支持W3Cschool